Feedback-Controlled Random Test
Generation

Kohsuke Yatoh': Kazunori Sakamoto?, Fuyuki Ishikawa?, Shinichi Honiden'?
tUniversity of Tokyo, Japan,
2National Institute of Informatics, Japan
{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT

Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and effectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight different, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.
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1. INTRODUCTION

Feedback-directed random testing [17] is a promising tech-
nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5,25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11,12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].

Despite its importance, characteristics of feedback-directed
random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14,27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.

We address two research questions in this paper.

RQ1: Why does the test effectiveness stop increasing at
different points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test effectiveness of feedback-directed random
testing should differ because of its randomness. However,
the observed difference is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.

There are three contributions in this paper.

e We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
effectiveness improve by limiting the amount of feed-
back.



e We propose an algorithm named feedback-controlled
random testing, which controls the amount of feedback
adaptively.

e We demonstrate advantages of our algorithm through
experiments on eight different real-world application
libraries. The average score of obtained test effective-
ness increases over 204% in the best case, while keeping
the interquartile range under 1.2%.

The rest of this paper is organized as follows. Section 2 in-
troduces the feedback-directed generation algorithm and dis-
cusses the performance characteristics of the algorithm. Our
hypothesis for this characteristics is posed and confirmed in
Section 3. Our feedback-controlled generation algorithm is
described in Section 4, and evaluated in Section 5. We re-
view related work in Section 6 and finally summarize our
study in Section 7.

2. ANALYSIS OF FEEDBACK-DIRECTED
RANDOM TEST GENERATION

In this section, we introduce the algorithm of feedback-
directed random test generation and discuss its character-
istics. Feedback-directed random testing is a technique to
create random test inputs. It constructs method sequences
from public methods extracted from a given list of classes
under a test. Each method sequence makes a unit test of
SUT. In each method sequence, inputs are created, mutated,
and consumed by method calls. The generated method se-
quences can be used for any purpose, like fault detection by
contracts [17] or regression test generation [19]. It can also
be used to guide dynamic symbolic execution [9,26] or to
mine specifications of software [18].

The main difference between feedback-directed random
testing and other random test generation techniques is that
feedback-directed random testing utilizes feedback from the
previously generated tests to guide the generation. Feedback-
directed random testing starts from trivial method sequences
that contain only a single method call or a constant. Then,
it creates longer method sequences by concatenating a newly
selected method and previously created method sequences.
A method call normally returns a value, so method sequences
can supply these return values as arguments for later method
calls. When choosing a method sequence to extend, feedback-
directed random testing leverages feedback from the exe-
cution results of sequences. Sequences that throw excep-
tions are not worth extending, because an exception pre-
vents execution of successive method calls. When generat-
ing a method sequences without this feedback, it is likely
that a long method sequence is terminated with an excep-
tion and the latter part of the sequence remains unexecuted.
By using feedback, it can guide the generation and efficiently
make long method sequences that terminate normally.

2.1 Algorithm

Before starting analysis, we can benefit from formally
defining the feedback-directed random test generation algo-
rithm. It takes a class list as input and outputs method se-
quences. Generated method sequences include public meth-
ods from the input classes.

Figure 1 shows the algorithm of feedback-directed test
generation. The original paper [17] suggests using some
optimizations, but we omitted them to focus on the fun-
damental flow of the algorithm. The algorithm takes the
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procedure FeedbackDirectedGeneration(classes)
pool = createNewPool()
while time limit not reached do
generate(pool, classes)
end while
return pool
end procedure

procedure generate(pool, classes)
newSeq = createSequence(pool, classes)
r = ezecule(newSeq)
if isExtensible(newSeq,r) then
addToPool(pool, newSeq)
end if
end procedure

Figure 1: Feedback-directed generation algorithm

class list of SUT as an input. At first, the pool is initial-
ized with random primitive values (createNewPool). Each
primitive is encoded as a single sequence that creates a vari-
able initialized with the primitive. Then, the algorithm con-
tinues generating method sequences until the time limit is
reached (generate). In the main loop, new method sequences
are created by combining a public method randomly se-
lected from the class list with previously generated sequences
that supply values compatible with the method parame-
ters (createSequence). The created sequence is executed
(execute). After execution, some sequences are revealed to
be inextensible (isEztensible). Sequences that throw excep-
tions cannot be extended, because even if we concatenate a
method after them, the method will never be executed. Se-
quences that violated contracts are also not worth extend-
ing. If the sequence is extensible, it is added to the pool
(addToPool).

After the main loop is terminated, generated method se-
quences are held in the value pool. We can output them to
create regression tests or to point out contract violations.

2.2 Performance Characteristics

To analyze the performance characteristics of feedback-
directed random test generation, we conducted a prelimi-
nary experiment on a widely used utility library. Through-
out this paper, we used a machine with Intel Xeon X5650
(2.67GHz) and 100GB RAM, which runs CentOS 7.0. The
testing environment is isolated by Docker 1.3.2'. We ran an
open source feedback-directed random test generator Ran-
doop? [16] with OpenJDK 1.7 installed on the standard
Ubuntu 14.04 container. We selected Apache Commons Col-
lections version 4.0 as a model SUT. It is the most popular
collection library according to MVNRepository®>. It is a rel-
atively large library with 58,186 lines of codes and has a
variety of classes ranging from simple proxies to complex
data structures.

We ran Randoop with ten different random seeds and plot-
ted the branch coverage in Figure 2. This graph raises the
first research question.

RQ1: Why does the test effectiveness stop increasing at
different points depending on random seeds?

"https://www.docker. com/
Zhttps://code.google.com/p/randoop/
3http://mvnrepository.com/
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Figure 2: Branch coverage of Commons Collections
4.0 achieved by feedback-directed random testing
with ten different random seeds

The aim of this paper is to give an answer to this question
and propose a workaround method to remedy the problems.
RQ1 can be divided into two sub-questions:

RQ1-1: Why does the coverage differ depending on ran-
dom seeds?

RQ1-2: Why does the coverage stop increasing at certain
points?

Randomized techniques naturally depend on random seeds,
and the results may change according to seeds. However,
the results of feedback-directed random testing are quite
unstable. This leads to the first sub-question (RQ1-1). We
suspect that the reason lies in the mechanism of feedback-
directed random testing.

For the second sub-question (RQ1-2), there are three pos-
sibilities. The first two possibilities seek the cause in outer
factors: SUT and coverage criteria. However, we deny the
first two possibilities and find the cause in feedback-directed
random testing itself. Now, we review the three possibilities
one by one.

The coverage has already reached the mazimum value. This
is the most optimistic viewpoint. Due to the existence of
dead codes, statement or branch coverage does not always
reach 100 percent. However, this possibility is immediately
denied because the coverage differs among seeds. Appar-
ently, there are some code lines that are covered in some
seeds but not in others.

The coverage does not reflect the increase of actual fault
detection capacity. How coverage is correlated with actual
fault detection is being actively discussed [11,13]. We can-
not say the actual fault detection capacity is not increasing
only due to the fact that the branch coverage is not increas-
ing. However, we can at least say that faults in codes not
executed in test suites can never be found, so an unexplored
code region means a lack of certain fault detection capacity.
Thus, fault detection capacity also stops increasing in this
aspect.

The feedback-directed random test generation is no longer
generating interesting tests due to its incompleteness. We
believe this is the correct answer to RQ1-2. The mechanism
of feedback-directed random test generation has a funda-
mental weakness and stops generating interesting sequences
after running for a certain time. The feedback mechanism it-
self has a pitfall inside. In the following section, we present
clues that the feedback mechanism over-directs the gener-
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public class Stone {
public final boolean black;
public Stone(boolean black) {
this.black = black;
}
public Stone clone() {
return new Stone(this.black);
}
public boolean isBlack() {
return this.black;
}
}

Figure 3: Example SUT for illustrating over-
directedness of feedback-directed random test gen-
eration

ation and limits the diversity of test inputs. This over-
directedness can explain both the instability and low effec-
tiveness.

3. OVER-DIRECTEDNESS

Our analysis indicates that feedback-directed random test-
ing has some troublesome performance characteristics. We
dare to say that the feedback mechanism has intrinsic weak-
ness in itself. We hypothesize that the over-directedness of
feedback-directed random testing limits the diversity of gen-
erated tests. The over-directedness affects the performance
in two ways.

e The coverage score strongly depends on to which di-
rection the algorithm guides the generation.

e The limited diversity prevents coverage from increas-
ing after some points.

In this section, we prove the existence of the over-directedness
and show how it worsens the performance of feedback-directed
random testing.

3.1 Existence of Over-Directedness

Figure 3 lists an example SUT that illustrates the over-
directedness of feedback-directed random test generation.
The class represents a stone colored black or not. When
clone is called, it returns a newly created stone the same
color as this.

If black stones and non-black stones are generated in the
same probability (50% each), they form a uniform distribu-
tion. The expected numbers of black and non-black stones
are the same, and the variance of the distribution is small.
This is false if you are using feedback-directed random test-
ing.

The actual distribution of the number of generated stones
is shown in Figure 4. We conducted the feedback-directed
random testing until 100 sequences were made. We ran it
with 1000 different random seeds and plotted the number
of generated stones. Each point represents the numbers of
black or non-black stones generated by a seed.

The total number of generated stones varies from around
300 to 600 in accordance with the different lengths of gener-
ated sequences. However, notably the distribution does not
converge to the center line, which represents the expected
number of each stone if they are generated in the same prob-
ability. The distribution is rather biased to each axis. For
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Figure 4: Distribution of Stone instances generated
in feedback-directed random testing

example, only black stones are generated in some directions,
but only non-black stones are generated in some other di-
rections. This indicates that the distribution of feedback-
directed random testing is different from the pure random
testing.

This behavior is not instinctive but a result of the over-
directedness. The feedback mechanism of feedback-directed
random testing is classified as positive feedback. In feedback-
directed random testing, the tendency of former test genera-
tion is amplified by the feedback mechanism. This is because
methods in SUT ordinarily produce a value that is strongly
correlated with the arguments. Similar arguments lead to
similar return values, and the return values are used as sim-
ilar arguments.

There exists a limited heuristic to avoid this situation.
The authors of feedback-directed random testing leverage
the equals method to avoid duplicated values. In the Stone
case, if Stone implements the equals method, the situation
can be avoided. However, that heuristic does not apply to
real settings. For example, List class has many similar but
different states. Lists with the same prefix will behave al-
most the same with find(z) calls if  can be found in the
prefix. The equals heuristic cannot decide which Lists are
similar or not.

3.2 Effect of Over-Directedness

To estimate the effect of over-directedness on testing real
software, we conducted a preliminary experiment on the
model SUT. We compared two configurations:

1. Run feedback-directed random testing only once, 3600
seconds.

2. Run feedback-directed random testing 36 times. Each
run has a time limit of 100 seconds. Thus, total time
is 3600 seconds.

The first configuration is a baseline. The second configura-
tion is equivalent to resetting value pools during feedback-
directed random testing. The feedback is reset every 100
seconds. In other words, directedness is limited to 100 sec-
onds. For each configuration, we calculated the cumulative
code coverage. We used 100 different random seeds and
plotted the results in Figure 5.

As shown in Figure 5, the second configuration outper-
forms the first. Even the maximum coverage score of the
first configuration is lower than the minimum coverage score
of the second. The variance of the second configuration is
much smaller than that of the first. This means the sec-
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Figure 5: Box plots of branch coverage of Commons
Collections 4.0, comparing two configurations

ond configuration is better in terms of both the score and
stability.

These results indicate that the amount of feedback and
directedness must be controlled carefully. In the first con-
figuration, we used full feedback but obtained poor results.
In the second configuration, we limited the feedback and ob-
tained good results. However, without sufficient feedback,
we cannot generate sequences of method calls, which is the
original purpose of the feedback-directed random testing.
Thus, we must find the appropriate amount of feedback.
Finding the appropriate amount of feedback can be seen as
balancing the trade-off between search depth and breadth.
By directing the generation, we can search deeply, and by
un-directing the generation, we can search widely. In the
next section, we propose a technique that adaptively bal-
ances the trade-off.

4. FEEDBACK-CONTROLLED RANDOM
TEST GENERATION

We propose a method to control the amount of feedback
and balance the trade-off between search depth and breadth.
It is named feedback-controlled random test generation, be-
cause it controls in which direction to search by utilizing the
feedback information. Our basic idea is to use multiple pools
concurrently, instead of using a single pool. Each pool has
different contents, so different pools guide the generation
toward different directions. By holding multiple pools at
the same time and concurrently using them, the feedback-
controlled generation algorithm can dynamically decide in
which direction to search further and in which direction to
stop searching by leveraging the feedback information.

Instead of managing a single pool, the algorithm manages
a set of pools (pools). When considering a set of pools, there
exist three basic operations on a set.

Selecting an item. Equivalent to selecting a pool to use.

Adding items. Equivalent to introducing new pools and
initiating new directions in which to search.

Deleting items. KEquivalent to stopping searching a pool

further.

By combining the above operations, we can control the depth
and breadth of search directions. The next search direction
is determined by selecting a pool to use. Adding a new
pool widens the breadth, but the new pool requires some of
the time budget, which is otherwise used to deepen the ex-
isting directions. Deleting pools increases the time budget
for the remaining pools, but the deleted directions cannot



parameter: INP, MNP

procedure FeedbackControlledGeneration(classes)
pools = {}
for i =1, INP do
pools = pools U { createNewPool() }
end for
while time limit not reached do
if shouldAddPool(pools) then
pools = pools U { createNewPool()}
end if
pool = selectPool(pools)
generate(pool, classes)
if |pools| > MNP then
pools = deletePools(pools, MNP /| 2)
end if
end while
return pool
end procedure

Figure 6: Feedback-controlled generation algorithm

be searched in any more. For each of the above operations,
there may be various strategies. In this research, we adopted
simple heuristics.

The algorithm of feedback-controlled random testing is
listed in Figure 6. It requires two additional parameters:
INP (the initial number of pools) and MNP (the maximum
number of pools). Initially, the set of pools contains INP
new pools. Then, until time limit is reached, the generation
continues. When shouldAddPool returns true, a new pool
is added to the set. Before each generation attempt, the
pool to use is selected by selectPool. The generation itself is
the same as the original feedback-directed random testing.
After the generation, if the number of pools exceeds MNP,
the set of pools is updated by deletePools(pools,n), which
return n filtered pools.

4.1 Selecting Pool

The function selectPool takes a set of pools and returns
the pool to be used. This is equivalent to determining in
which direction to search further. Instead of selecting a pool
at random or in rotation, we prioritize the pools with their
score defined below and select the pool with the highest
score.

The scoring function is defined as

coverage(pool)
consumedTime(pool)

score(pool) = {
00

(coverage(pool) > 0)
(coverage(pool) = 0)

where coverage(pool) stands for the current achieved cov-
erage of the pool and consumedTime(pool) stands for the
sum of time consumed by the pool, including the method
sequence creation and sequence execution. The score func-
tion represents the coverage score divided by the time con-
sumed. As shown in Figure 7, score(pool) monotonically de-
creases. Thus, the expected coverage gain can be estimated
by score(pool).

We reviewed in Section 2 that the coverage score differs a
lot in accordance with the random seed. Thus, prioritizing
pools by the expected coverage gain can improve the overall
coverage increase. When consumed Time(pool) is near zero,
the scoring function has a spike. This works as an appetite
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Figure 7: Shape of score(pool)

for newly created pools. Because the direction of newly cre-
ated pools is unknown, it is better to grow them in order to
know the directions to which they will guide the generation.

One drawback of this scoring function is that it does not
consider the overlap of coverage among pools. For example,
when two pools have exactly the same contents and produce
the same method sequences, this function cannot prevent
this overlap. The deletePools function will detect and re-
move such overlaps.

4.2 Adding Pool

The timing to add a new pool is determined by the func-
tion shouldAddPool. The newly added pool has score = oo
and will be selected by the next selectPool. Adding a pool
corresponds to initiating a new direction in which to search.
However, adding too many pools slows down the pace of
exploration in current directions. We adopted a simple ap-
proach in which new pools are added every second. There
may be a better approach, but currently it is out of our
scope.

4.3 Deleting Pool

If the number of pools exceeds MNP, deletePools is called
to select pools to drop. It returns a subset of pool with
size n. This corresponds to pruning directions in which to
search. In general, it is hard to predict which direction will
hit an uncovered region. To maximize the possibility of hit-
ting an uncovered region, we use an adaptive strategy. The
uniqueness of a pool is defined as follows:

2 cccovered(pool) Uniqueness(pool, c)

uniqueness(pool) = covered(pool)|

count(c, pool)
ZpEallpools Count(q p)

where count(c, pool) returns the number pool passed cover-
age location ¢ and covered(pool) = {c | count(c, pool) > 0}.

The purpose of uniqueness(pool) is to measure uniqueness
of coverage locations the pool passes. It is an average of each
uniqueness of coverage locations the pool passes, and unique-
ness of coverage locations is determined by how many times
other pools passed the location. If a pool passes locations
that are not passed by other pools, the uniqueness of the
pool becomes higher. In contrast, if a pool passes only loca-
tions passed by other pools, the uniqueness becomes lower.

4.4 Global Resetting

If the SUT and testing environment act deterministically,
the above algorithm should work fine. However, the actual
SUT includes nondeterministic behaviors, and the testing
environment is not deterministic either.

uniqueness(pool,c) =



There are cases in which SUT have essentially nondeter-
ministic specifications. This is not rare, and our model
SUT, Apache Commons Collection, has nondeterministic
functions. For example, PassiveExpiringMap uses system
clocks to determine the validity of an entry. Even if a
method sequence including PassiveExpiringMap executes
normally at a time, the same sequence may throw an ex-
ception later. Note that, even for this case, random testing
makes sense because contracts can verify the behavior of
such nondeterministic methods. Another example is Ref-
erenceldentityMap, which uses the native hashCode imple-
mentation for hashing. Because a typical Java Virtual Ma-
chine (JVM) uses internal memory addresses to calculate
native hash codes, essentially random values are returned
by hashCode. Though the interface specifications of Ref-
erenceldentityMap do not include nondeterministic behav-
iors, its inner structure changes nondeterministically in ac-
cordance with hashCode. This is also the same for general
Maps if element classes do not override the hashCode method.

Alongside SUT, the testing environment is a source of
nondeterministic behaviors. The amounts of available mem-
ory and CPU resources change dynamically, which affects
the behavior of generated method sequences. For example,
if a method sequence requires huge memory, the first exe-
cution may succeed but successive executions may fail due
to out-of-memory error. The execution time of sequences
also depends on the condition of the physical machine and
system. If the CPU is busy, execution will take longer than
usual. The implementation of Randoop uses an execution
timeout to detect an infinite loop and may misjudge some
long running executions as an infinite loop. In addition to
the above examples, JVM has instabilities when conducting
random testing. In general, random testing requires a huge
amount of memory and CPU time by creating many objects
and exercising SUT in an unusual way. As a result, JVM
instance becomes unstable after running random testing for
a while.

Those nondeterministic behaviors contradict the assump-
tion of the algorithm that the method sequences in the pools
can be extended and slow down the generation significantly
if they happen. To remedy the effect of nondeterministic be-
haviors, feedback-controlled generation algorithm still needs
to restart the JVM and reset pools periodically. We call this
global resetting.

5. EVALUATION

To answer RQ2 (“Can our proposed technique lessen the
dependency on random seeds and improve the overall per-
formance of test generation?”), we evaluated our technique
through a sequence of experiments®. Firstly, we confirmed
the validity of our heuristics on the model SUT. The feedback-
controlled generation algorithm uses two heuristic functions:
score and uniqueness. We compared these two functions
with random selection and random deletion strategy in or-
der to prove that our heuristic functions can guide the gen-
eration to effective directions. We also evaluated the effect
of global resetting and show that the combination of the
feedback-controlled generation algorithm and global reset-
ting outperforms other settings. Then, we surveyed the rel-
evance of algorithm parameters. Our algorithm uses three

4The implementation and experimental data can be down-
loaded from http://www.klazz.net/pub/issta2015/
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Table 1: Coverage scores with or without heuristics

statement branch
Select Delete | Med. IQR | Med. IQR
random random 53.1 12.2 | 221 13.0
score random 60.9 9.8 32.8 123
random uniqueness | 55.5 7.6 | 25.7 8.7
score uniqueness | 61.2 4.3 32.7 4.4

Table 2: Coverage scores with or without global re-
setting

statement branch
Algorithm  Reset | Med. IQR | Med. IQR
directed none 47.8 11.9 | 17.0 10.0
directed 100 sec. | 63.2 1.4 36.2 1.7
controlled none 61.2 4.3 32.7 4.4
controlled 600 sec. | 67.1 1.6 40.6 2.0

parameters: INP, MNP, and resetting period. We show
that these parameters are not relevant to the results. Our
algorithm can adapt the direction irrelatively to these pa-
rameters, so end users do not need to adjust the parameters
carefully. Finally, we evaluated our technique on real-world
application libraries. We show that our technique can pro-
duce tests with higher coverage than the original feedback-
directed random test generation. Throughout this section,
we conducted the experiments in the same environment used
in Section 2. For each experiment, we sampled results with
ten different random seeds unless otherwise mentioned and
calculated the median (Med.) and interquartile range (IQR)
of coverage score. The median of coverage score represents
the average score of each algorithm or configuration, whereas
the interquartile range represents the variance of results.

5.1 Validity of Score and Uniqueness Heuris-
tics

First, we confirm the validity of our two heuristic functions
score and uniqueness. We compared four settings: each se-
lects pool at random or by using score and deletes the pool
at random or by using uniqueness. We conducted an experi-
ment with the model SUT, Apache Commons Collections 4.0
using parameters INP = 10 and MNP = 100. We did not
use global resetting, so the effects of score and uniqueness
are emphasized. The coverage statistics after 3600 seconds
are listed in Table 1.

From the table, we can say that score function increases
the average coverage and uniqueness function improves the
variance of coverage. The average scores of both state-
ment coverage and branch coverage are increased by score.
By using wuniqueness, the variance of coverage scores de-
creases. This result indicates that score can select pools
that increase the coverage on average but becomes helpless
when the algorithm falls into over-directedness. This is be-
cause score does not consider the overlap of directions. The
uniqueness heuristic can fix over-directedness by removing
pools with similar contents and decrease the variance of re-
sults. Though the variance is reduced by uniqueness, some
seeds still perform much worse than other seeds. This is con-
sidered to be a consequence of nondeterministic behavior of
SUT and the testing environment that will be overcome by
global resetting.



5.2 Validity of Global Resetting

Global resetting is necessary to handle the nondetermin-
istic behavior of SUT and the testing environment. We
measured the effect of global resetting with two algorithms:
the original feedback-directed generation algorithm and our
feedback-controlled generation algorithm. We again used
the model SUT and parameters INP = 10 and MNP = 100.

We used the resetting period 100 seconds for the feedback-
directed generation algorithm, because 100 seconds is the
default timeout of Randoop. For the feedback-controlled
generation algorithm, we used a longer resetting period of
600 seconds, so that pool deletion would occur 11 times dur-
ing a run. We discuss the relevance of the resetting period
later. Coverage statistics after 3600 seconds are listed in Ta-
ble 2. We can see that global resetting improves the average
score and variance of results. Even if the generation is stuck
due to the nondeterministic behaviors, it can be recovered
by restarting the whole system.

5.3 Relevance of Parameters

In the experiments above, we confirmed the validity of
our heuristic functions and global resetting. We now review
the relevance and significance of parameters over the results
using the model SUT.

Firstly, we investigated the relevance of the parameter
MNP. We fixed INP to one and resetting period to 600
seconds and changed MNP among 10, 100, and 500. The
coverage statistics after 3600 seconds are shown in Table 3.
The results of MNP = 10 are slightly better than those of
other configurations, and those of MNP = 500 are slightly
worse, but the difference of median scores is under 3%. We
can conclude that the algorithm is robust with respect to
MNP and that MNP is not strongly relevant to the results.

Secondly, we investigated the relevance of the parameter
INP. We fixed MNP to 100 and the resetting period to 600
seconds and performed experiments with INP = 1,10, 50.
The coverage statistics after 3600 seconds are in Table 4.
The results do not seem to be strongly relevant to the pa-
rameter. This is because the set of pools is soon dominated
by the newly added pools.

Finally, we investigated the relevance of the resetting pe-
riod. We used parameters INP = 1 and MNP = 10, which
performed slightly better than the other parameters tested
in the above experiments. We conducted an experiment with
six different periods: 20, 50, 100, 300, 600, and 1200 sec-
onds. The results, listed in Table 5, indicate that extremely
long resetting periods (600 and 1200 seconds) produce lower
scores than shorter periods. With long resetting periods,
there are fewer chances of global resetting (five for 600 sec-
onds and only two for 1200 seconds), which may lead to
the lower results. The shortest resetting period, 20 seconds,
performs slightly lower than moderate periods (50, 100, and
300 seconds). The moderate resetting periods produce sim-
ilar results. The resetting period has a stronger relevance
on results than the other two parameters: INP and MNP.
However, its sweet spot is large, and the results are not very
sensitive to the parameter in the spot. Though the burden
to find this region is left to end users, it does not require
sensitive parameter tuning.

5.4 Real Libraries

From the experiments above, we analyzed the characteris-
tics of our feedback-controlled random testing algorithm on
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Table 3: Coverage scores with different MNP values

statement branch
INP MNP  Reset | Med. IQR | Med. IQR
1 10 600 sec. | 68.5 1.8 | 41.7 2.4
1 100 600 sec. | 68.2 2.1 41.3 2.4
1 500 600 sec. | 67.1 1.5 | 40.1 1.5

Table 4: Coverage scores with different /NP values

statement branch
INP MNP  Reset | Med. IQR | Med. IQR
1 100 600 sec. | 68.2 2.1 41.3 2.4
10 100 600 sec. | 67.1 1.6 40.6 2.0
50 100 600 sec. | 67.8 0.9 41.2 1.0

Table 5: Coverage scores with different resetting pe-
riods

statement branch
INP MNP Reset Med. IQR | Med. IQR
1 10 20 sec. 69.8 1.1 43.5 0.7
1 10 50 sec. 70.7 0.4 44.3 0.9
1 10 100 sec. 70.8 0.8 43.9 0.9
1 10 300 sec. 70.3 1.2 43.8 0.8
1 10 600 sec. 68.5 1.8 41.7 2.4
1 10 1200 sec. | 65.9 3.2 38.8 4.4

the model SUT. Now, we review its generality by conduct-
ing experiments on eight different real-world application li-
braries. We set the parameters as INP = 1, MNP = 10, and
the resetting period 100 seconds. Table 6 lists the libraries
used in our experiments. We selected the test target libraries
from MVNRepository, which is a catalog of Java libraries
published to maven repositories. It provides libraries’ cate-
gory and popularity information. We selected eight popular
libraries from seven different categories. We selected one li-
brary for each category. One exception is the Core Utilities
category. We selected Guava and Commons Lang, because
both are top-ranked libraries throughout all categories.

To evaluate our proposals and compare them with the
original feedback-directed random testing, we conducted test-
ing with three configurations.

baseline: The original feedback-directed generation algo-
rithm is used, and no reset occurs during the whole
time budget.

reset: The original feedback-directed generation algorithm
is used, but global resetting occurs every 100 seconds.
This is to assess the effect of resetting feedback.

control: Our feedback-controlled generation algorithm is
used, and global resetting occurs every 100 seconds.
This is to evaluate our feedback-controlled generation
algorithm.

Experiments were conducted on eight libraries, each with
the three configurations above. We used 30 different ran-
dom seeds for these experiments. The coverage statistics
are listed in Table 7. We sampled at two points (605 and

SWe omitted ¢ = 60 for reset, because reset is essentially the
same as baseline before the first global resetting at ¢t = 100.



Table 6: Libraries used in experiments

1D Name Ver. Category #File #Line #Statement #Branch
collections | Commons Collections 4.0 Collections 286 58186 8263 1965
lang Commons Lang 3.3.2 Core Utilities 132 66628 9942 3090
guava Guava 18.0 Core Utilities 469 129249 20642 3740
math Commons Math 3.3 Math Libraries 900 202839 30679 8414
codec Commons Codec 1.9 Base64 Libraries 56 13948 2437 611
gson Gson 2.2.4 JSON Libraries 63 12216 2529 670
h2 H2 Database Engine 1.3.176 Embedded SQL Databases | 472 158926 44859 10913
jetty Jetty Server Core 9.2.6 Web Servers 103 32316 7379 1848

3600 seconds) in order to compare short-term and long-term
performance of each configuration. For each configuration,
we calculated the median and interquartile range of coverage
score. For reset and control, we also conducted a Wilcoxon
rank-sum test with the baseline and calculated the p-value.
If the result has a significant difference (here, p < 0.01), we
show the difference as an increase over baseline, which is
calculated by W where median. and mediang
represent the medians of the configuration and baseline, re-
spectively. Changes in the median of coverage are illustrated
in Figure 8. The effect of resetting and feedback-controlling
seems to differ depending on the target library. There are
three patterns.

Large Utility Libraries. Commons Collections, Commons
Lang, Guava, and Commons Math are representatives of
this pattern. For these libraries, the branch coverage of re-
set and control exceeds 78% (lang) to 204% (math) of the
coverage of baseline after 3600 seconds. As we can see from
Figure 8, reset and control have different curves. At first,
control outperforms reset. However, the differences become
smaller with time. For Guava, time > 1000, the ranking
changes and reset becomes the best strategy, though the
difference is only 2.5% after 3600 seconds. This is consid-
ered to be because the feedback-controlled generation algo-
rithm makes an assumption on the form of score function.
It de-prioritizes pools with lower score at first and limits
the possibility to hit an uncovered region for the sake of
rapid coverage gain. Thus, if the time budget is limited,
the feedback-controlled generation algorithm fits well, and
if there is plenty of time, repeatedly running the original
feedback-directed generation algorithm is an option.

Small Libraries. For this pattern, the relevance of reset
and feedback-control is not apparent. Commons Codec and
Gson are typical libraries in this pattern. Note that for this
kind of library, the original algorithm performs better and
seems to have less room for improvement than the large li-
braries above. Though the coverage scores converge to the
same level after 3600 seconds, the speed of the increase dif-
fers for the first 60 seconds. This indicates that even for this
kind of library, controlling feedback may be beneficial if the
time budget is limited.

Configuration Intensive Libraries. The three configura-
tions did not show statically significant differences regard-
ing coverage for this pattern. This pattern includes H2 and
Jetty. These libraries need careful configuration to work
properly: H2 needs database configurations, and Jetty needs
server settings. In addition, Jetty requires servlet imple-
mentations. Therefore, to test these libraries effectively,
developers have to configure them and provide implementa-
tions for testing. Because the feedback-directed or feedback-
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controlled generation algorithm does not support functional-
ity for automatic configuration generation or automatic stub
generation, neither could test these configuration-intensive
libraries effectively.

Overall, our feedback-controlled generation algorithm can
speed-up the increase of coverage by prioritizing pools. How-
ever, the control is not fully adaptive and sacrifices long-
term effectiveness for short-term efficiency. This is a point
we want to improve in the future, but the current algorithm
can perform much better than the other algorithm when the
time budget is limited. When the time budget is not limited,
the feedback-directed generation algorithm with resetting is
a good option, but there seems to be no merit in running the
feedback-directed generation algorithm for a long time. One
drawback of feedback-directed or feedback-controlled algo-
rithm is that it lacks the capability of configuration genera-
tion or stub generation. They require efforts from develop-
ers when testing configuration-intensive libraries. From this
experiment, it is unknown which algorithm performs bet-
ter with these configuration-intensive libraries when proper
configurations and stubs are provided.

5.5 Threats to Validity
5.5.1 Internal Threats to Validity

Random testing is an inherently stochastic technique. To
make things worse, as mentioned in Section 4, both SUT
and the testing environment have nondeterministic behav-
iors. These stochastic and nondeterministic behaviors make
it difficult to validate random test generation algorithms. To
validate our technique, we took 30 different random seeds
and calculated the median and interquartile range of cov-
erage score. However, there remains a possibility that the
sampled results are biased from the true distribution of all
possible results.

5.5.2  External Threats to Validity

The results of test generation depend on SUT. To vali-
date the generality of our results, we choose eight different
SUT from seven different categories. Each SUT is a popu-
lar library according to MVNRepository and considered to
be high quality software. However, the results are unknown
when our technique is applied to libraries that have other
categories or are low quality. We also limited our test target
to application libraries, which are easier to test automati-
cally. Testing end-user applications is out of the scope of
this paper.

5.6 Limitation

This research only deals with the test effectiveness in terms
of statement or branch coverage. The actual capacity of fault



Table 7: Coverage statistics of eight different popular libraries

baseline reset control
ID Time | Med. IQR | Med. IQR P Inc. | Med. IQR P Inc.
colloctions 00 | 246 3.0 . - - | 440 23 <o001 8%
3600 | 45.5 16.8 | 63.6 1.2 <001 39% | 70.6 0.8 <001 55%
lang 60 | 422 124 | - - - T [ 585 64 <001 33%
) 3600 | 624 34 | 753 12 <00l 20% | 766 0.6 <001 22%
< 60 | 187 4.7 . - - T [ 231 34 <o0o0l 23%
$ BUAVE 3600 | 277 9.6 | 422 0.7 <001 52% | 40.3 0.6 <001 45%
O math 60 14.3 5.5 - - - - 21.2 5.7 <001 48%
g 3600 | 25.3 14.0 | 49.9 14 <001 96% | 50.4 1.0 <o0.01 98%
E T codeo 60 | 73.1 L7 | - - = - [ 752 06 <001 2%
2 3600 | 80.5 0.5 | 81.5 04 <00l 1% | 81.9 03 <00l 1%
= 60 | 495 3.2 . - - T 558 12 <o0o0l 12%
gson 3600 | 60.6 1.2 | 63.6 0.8 <001l 4% | 63.3 05 <001 4%
o 60 | 17.7 48 . - - [ 163 9.7 0.8 .
3600 | 27.2 59 | 33.8 40 <001 24% | 282 0.7  0.12 -
. 60 | 185 25 . - - [ 202 12 <oo0l 8%
Y 3600 | 285 1.2 | 295 64 <001 3% | 285 1.7 098 -
baseline reset control
1D Time | Med. IQR | Med. IQR P Inc. | Med. IQR P Inc.
collections 60 | 60 L5 . . - . 141 1.9 <001 136%
3600 | 169 10.8 | 360 1.6 <001 112% | 444 08 <001 162%
lang 60 | 161 6.6 . . - . 351 6.8 <001 118%
3600 | 33.0 53 | 561 05 <001 69% | 588 04 <001 78%
go guava 60 6.7 2.0 B B - B 10.0 25 <001l 50%
= 3600 | 12.3 7.6 | 30.0 0.8 <00l 144% | 275 0.6 <001 123%
3 o 60 56 29 . . . . 98 3.7 <00l 75%
2 ma 3600 | 11.4 7.4 | 336 14 <001 195% | 347 1.1 <001 204%
< 1 60 | 459 24 . . - . 511 1.1 <o0.01 1%
= codec 3600 | 61.4 0.7 | 640 07 <001 4% | 651 08 <001 6%
A 60 | 283 44 . . - . 360 09 <00l 27%
gson 3600 | 41.9 1.2 | 445 06 <001 6% | 446 09 <001 6%
o 60 | 48 26 . . - . 50 3.3 053 .
3600 | 10.6 34 | 163 20 <00l 54% | 123 0.3  0.01 -
. 60 2.7 1.1 - - - - 3.4 1.0 <0.01 2%
ety 3600 | 108 0.9 | 122 07 <001 12% | 122 04 <001 12%

detection depends much on test oracles used with test gener-
ators. The relationship between coverage and fault detection
is a controversial topic, and there is an ongoing discussion
on how coverage is correlated with test effectiveness [11,13].
For this research, we treat coverage as a goal in order to
exclude the influence of test oracles and measure the ability
for test generation.

6. RELATED WORK

When conducting random testing, the diversity of gen-
erated tests matters. Adaptive random testing [2, 3] aims
to improve diversity by measuring distances of candidate
inputs and sampling the most distant input from already
tested inputs. It was originally proposed for numerical in-
puts, which have natural distance metrics, but Ciupa et
al. proposed a distance function for objects in an object-
oriented programming language [4]. Adaptive random test-
ing can achieve higher test effectiveness than naive random
testing with the same number of test inputs generated. How-
ever, the heavy computation cost that comes from calculat-
ing distances makes adaptive random testing practically im-
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possible [1]. A state-of-the-art adaptive technique [21] over-
comes this weakness by leveraging the geometric structure of
input space to speed up generation, but it assumes only nu-
meric inputs and is not simply applicable to object-oriented
programming languages. We also adopt adaptive approach
in deleting pools. Our approach compares coverage overlaps
instead of pairwise distances. We showed time-effectiveness
of our approach by experiments with a fixed time budget
rather than a fixed test size.

Search-based test generation is another kind of random-
ized technique. It starts from random seed sequences and
evolves them by using meta heuristics like hill climbing, sim-
ulated annealing, or a genetic algorithm (GA) [15], instead
of using feedback. EvoSuite [8] is a state-of-the-art search-
based testing tool using GA. It proved its usability in an
experiment on 100 randomly sampled open source projects
from Sourceforge [6,7]. We formulated the problem of find-
ing an appropriate amount of feedback as a search problem
and used search techniques to solve the problem.

There have been several studies that have improved the
effectiveness of feedback-directed or general random test-
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Figure 8:

ing. For example, MSeqGen [22] assists random testing
by statically mining method sequences from source code.
RecGen [28] analyzes object field access to recommend se-
quences. GenRed [14] extends feedback-directed genera-
tion by introducing input on demand creation and coverage-
based method selection. Swarm testing [12] switches be-
tween configurations to generate peculiar test inputs. These
techniques do not directly target the value pool in feedback-
directed random generation and can be combined with our
approach.

Besides random testing, dynamic symbolic execution (con-
colic execution) [10,20] is a promising technique to gener-
ate software tests. Pex [23] is a widely used test genera-
tion tool based on dynamic symbolic execution. Dynamic
symbolic executions inherently require seed sequences to in-
struct. Manually written parameterized unit tests [24] were
used for this purpose in common, but a recent study [26]
leverages feedback-directed random testing to create seed
sequences. Garg et al. also combined feedback-directed
random testing and dynamic symbolic execution to achieve
higher test coverage and fault detection [9]. For these stud-
ies, time budget for random testing is limited because it
is an aid for time-consuming dynamic symbolic execution.
Our feedback-controlled generation algorithm can outper-
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Average coverage scores of eight different popular libraries

form the feedback-directed generation algorithm, especially
in a limited time budget. Thus, our algorithm fits well as
a fully compatible substitution of feedback-directed genera-
tion algorithm for these investigations.

7. CONCLUSION

In this paper, we analyzed the characteristics of feedback-
directed random testing and found that excessive feedback
over-directs the test generation and limits the diversity of
tests generated. We proposed an algorithm, called feedback-
controlled random test generation, which controls the amount
of feedback in order to promote diversity. Experiments on
eight popular application libraries indicate that our approach
is highly effective in terms of test coverage for large-scale
utility libraries or with a limited time budget.

8. REFERENCES

[1] A. Arcuri and L. Briand. Adaptive random testing:
An illusion of effectiveness? In Proceedings of the 2011
International Symposium on Software Testing and
Analysis, ISSTA’11, pages 265275, 2011.

[2] T.Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse.
Adaptive random testing: The art of test case



[12]

[13]

[14]

[15]

[16]

[17]

diversity. J. Syst. Softw., 83(1):60-66, Jan. 2010.

T. Y. Chen, H. Leung, and I. Mak. Adaptive random
testing. In Advances in Computer Science - ASIAN
2004. Higher-Level Decision Making, volume 3321 of
Lecture Notes in Computer Science, pages 320-329.
2004.

I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Artoo:
Adaptive random testing for object-oriented software.
In Proceedings of the 30th International Conference on
Software Engineering, ICSE’08, pages 71-80, 2008.

A. P. Felt, E. Chin, S. Hanna, D. Song, and

D. Wagner. Android permissions demystified. In
Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS’11, pages
627-638, 2011.

G. Fraser and A. Arcuri. Sound empirical evidence in
software testing. In Proceedings of the 34th
International Conference on Software Engineering,
ICSE’12, pages 178-188, 2012.

G. Fraser and A. Arcuri. Evosuite: On the challenges
of test case generation in the real world. In
Proceedings of the 2013 IEEE 6th International
Conference on Software Testing, Verification and
Validation, ICST’13, pages 362-369, 2013.

G. Fraser and A. Arcuri. Whole test suite generation.
IEEE Trans. Softw. Eng., 39(2):276-291, Feb. 2013.
P. Garg, F. Ivancic, G. Balakrishnan, N. Maeda, and
A. Gupta. Feedback-directed unit test generation for
c¢/c++ using concolic execution. In Proceedings of the
2013 International Conference on Software
Engineering, ICSE’13, pages 132—-141, 2013.

P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. SIGPLAN Not.,
40(6):213-223, June 2005.

R. Gopinath, C. Jensen, and A. Groce. Code coverage
for suite evaluation by developers. In Proceedings of
the 36th International Conference on Software
Engineering, ICSE’14, pages 72-82, 2014.

A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr.
Swarm testing. In Proceedings of the 2012
International Symposium on Software Testing and
Analysis, ISSTA’12, pages 78-88, 2012.

L. Inozemtseva and R. Holmes. Coverage is not
strongly correlated with test suite effectiveness. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE’14, pages 435-445, 2014.
H. Jaygarl, K.-S. Lu, and C. K. Chang. Genred: A
tool for generating and reducing object-oriented test
cases. In Proceedings of the 2010 IEEE 3jth Annual
Computer Software and Applications Conference,
COMPSAC ’10, pages 127-136, 2010.

P. McMinn. Search-based software test data
generation: A survey: Research articles. Softw. Test.
Verif. Reliab., 14(2):105-156, June 2004.

C. Pacheco and M. D. Ernst. Randoop:
Feedback-directed random testing for java. In
Companion to the 22nd ACM SIGPLAN Conference
on Object-oriented Programming Systems and
Applications Companion, OOPSLA’07, pages 815-816,
2007.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In

326

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

Proceedings of the 29th International Conference on
Software Engineering, ICSE’07, pages 75-84, 2007.
M. Pradel and T. R. Gross. Leveraging test generation
and specification mining for automated bug detection
without false positives. In Proceedings of the 34th
International Conference on Software Engineering,
ICSE’12, pages 288-298, 2012.

B. Robinson, M. D. Ernst, J. H. Perkins,

V. Augustine, and N. Li. Scaling up automated test
generation: Automatically generating maintainable
regression unit tests for programs. In Proceedings of
the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE’11, pages
23-32, 2011.

K. Sen, D. Marinov, and G. Agha. Cute: A concolic
unit testing engine for c. In Proceedings of the 10th
European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
ESEC/FSE’13, pages 263-272, 2005.

A. Shahbazi, A. F. Tappenden, and J. Miller.
Centroidal voronoi tessellations—a new approach to
random testing. IEEE Trans. Softw. Eng.,
39(2):163-183, Feb. 2013.

S. Thummalapenta, T. Xie, N. Tillmann,

J. de Halleux, and W. Schulte. Mseqgen:
Object-oriented unit-test generation via mining source
code. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’09, pages 193-202,
2009.

N. Tillmann and J. De Halleux. Pex: White box test
generation for .net. In Proceedings of the 2nd
International Conference on Tests and Proofs,
TAP’08, pages 134-153, 2008.

N. Tillmann and W. Schulte. Parameterized unit tests.
In Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, ESEC/FSE’13, pages
253-262, 2005.

J. Yi, D. Qi, S. H. Tan, and A. Roychoudhury.
Expressing and checking intended changes via software
change contracts. In Proceedings of the 2013
International Symposium on Software Testing and
Analysis, ISSTA’13, pages 1-11, 2013.

C. Zhang, A. Groce, and M. A. Alipour. Using test
case reduction and prioritization to improve symbolic
execution. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis,
ISSTA’14, pages 160-170, 2014.

S. Zhang, Y. Bu, X. S. Wang, and M. D. Ernst.
Dependence-guided random test generation. CSE 503
Course Project Report, University of Washington,
May 2010.

W. Zheng, Q. Zhang, M. Lyu, and T. Xie. Random
unit-test generation with mut-aware sequence
recommendation. In Proceedings of the IEEE/ACM
International Conference on Automated Software
Engineering, ASE’10, pages 293-296, 2010.



