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Abstract—Lightweight property-based testing tools are becom-
ing popular these days. With property-based testing, developers
can test properties of the system under test against large varieties
of randomly generated inputs without writing test cases. Despite
the advantages of property-based testing, current property-based
testing tools have a major drawback: they require developers to
write generator functions for user-defined types. This is because
it is difficult for a tool to infer the possible values for the
type. However, user-defined generators sometimes fail to find
faults by only producing overly limited varieties of values. In
this paper, we present a new property-based testing tool, called
ArbitCheck, which automates object generation by adapting the
feedback-directed random test generation technique. With the
help of feedback-directed random test generation, ArbitCheck
exhaustively generates possible values of user-defined types and
tests properties with them, so that it can reveal faults that
are hard to find with either manually written tests or existing
property-based testing tools.

Keywords-Unit testing, Property-based testing, Random test-
ing, Feedback-directed random test generation, Object-oriented,
QuickCheck, Randoop, Java

I. INTRODUCTION

Today, testing gains more and more importance as a method
to ensure software quality. There are other methods to ensure
quality, such as model-based verification or theorem proving,
but most developers favor testing because it is simpler in
concept and easier to deploy. The simplest way to test a
program is to write test cases. Here, a test case for a program
is a set of inputs to and expected outputs from the program.
Popular testing frameworks including JUnit or RSpec support
this kind of testing. However, these manually written tests have
two disadvantages.

First, the test code tends to become very large when
developers pursue quality seriously. Because one test case
corresponds to one input, and there are many (and possibly
infinite) inputs for a program, to gain confidence that the
program works on any input developers have to write quite
a lot of test cases.

Second, manually written tests cannot find faults caused by
an input that is possible, but not expected by developers. From
our experience, many faults are found when a program is given
an input which developers failed to consider. Since test cases
are written by developers themselves, in manually written tests
there is no possibility that the program is tested against such
inputs.

An alternative method to test software is property-based
testing. In this method, developers write properties of a
program that are expected to hold. Property-based testing
tools generate a set of inputs and tests whether the properties
actually hold against these generated inputs. The written
properties are smaller than a set of test cases that describes the
same properties, and it can hit unexpected inputs that reveal
faults.

Lightweight property-based random testing [1], in which the
properties are described by the implementation language itself
rather than a modeling language, and inputs are generated at
random, is originally developed for functional programming
languages and becoming popular with the spread of functional
programming languages. However, current tools require devel-
opers to provide generator functions to test user-defined types.
Writing generator functions has several problems so that they
may miss certain kinds of faults, as described in Section II-B.

In this paper we propose a property-based testing tool
that automates the generation of user-defined types, called
ArbitCheck. ArbitCheck solves object generation problems by
employing feedback-directed random test generation [2] tech-
nique, which is an established method in the academic world.
Also we addressed issues occurred when applying feedback-
directed random test generation technique in practice. By using
our tool, developers can test their software with less manual
effort and enhanced fault-detection capability.

II. BACKGROUND

A. Property-based Testing

Property-based testing is a method for testing, in which tests
are described as properties of the SUT (system under test)
that are expected to hold. QuickCheck [1] is the most famous
tool for lightweight property-based testing. With QuickCheck,
developers write properties as Haskell functions and test them
with random values generated by the tool. QuickCheck had a
large impact on the Haskell community, so that a standard
Haskell textbook [3] devotes one chapter for testing with
QuickCheck. It is also ported to many other programming lan-
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guages, including Erlang1, Scala2, Java3, Python4, JavaScript5,
and so on.

List 1 is an example of properties written in Haskell from
the original QuickCheck proposal [1]. Here, the reverse
function takes a list as an argument and returns a reversed
one. ++ is an operator that concatenates two lists.
prop_RevUnit x =

reverse [x] == [x]
prop_RevApp xs ys =

reverse (xs ++ ys) == reverse ys ++ reverse xs
prop_RevRev xs =

reverse (reverse xs) == xs

List 1. Example Properties of reverse Function That Should Hold

QuickCheck generates random lists, call the functions that
express properties (i.e. prop_RevUnit, prop_RevApp and
prop_RevRev), and checks whether the functions return
true. If they return false, QuickCheck reports it to the user,
because it indicates there are faults in the program or misun-
derstandings of properties.

Property-based testing has three advantages over manual
testing. First, by writing only properties and omitting test data,
developers can reduce the size of test code significantly. In a
typical project using tests written manually, a series of test
cases is required to check one software property and the total
number of test cases becomes very large. In such a project, it
is not uncommon that test code weighs over 50 percent of the
overall code. Property-based testing remedies this situation by
making test code simpler and shorter.

Second, by running property-based tests against randomly
generated inputs, developers can find more bugs than manual
testing. Property-based testing can check properties with lots
of inputs so the chance of hitting bug is increased. In addition
to that, property-based testing can find faults that are caused
by corner cases which developers are unaware of. Manually
written tests can hardly find this kind of faults, because the
test cases are designed by the developers themselves. From
our experience, most bugs are unexpected ones and caused
when a program is fed an unexpected but valid input, so the
ability to find these bugs offers a great help to developers.

Finally, the properties can be viewed as a lightweight
formal specification of the program. Writing formal speci-
fications promotes understandings of both specification and
implementation, and is effective to share specification among
the team. It is important that this specification is executable.
This executable specification can avoid mismatch between
specification and implementation, which is often the case if
the specification is written in a separated document.

Despite these advantages, a problem arises when developers
want to test user-defined types. It is not appropriate to generate
completely random values for user-defined types, because
user-defined types usually have restrictions on the possible
values of their member fields.

1QuviQ QuickCheck http://www.quviq.com/index.html
2ScalaCheck http://www.scalacheck.org/
3junit-quickcheck https://github.com/pholser/junit-quickcheck
4pytest-quickcheck https://pypi.python.org/pypi/pytest-quickcheck/
5JSCheck http://www.jscheck.org/

data Frac = Frac Integer Integer -- numerator, denominator
fabs (Frac x y) = Frac (abs x) y

List 2. User-defined Frac Type and fabs Implementation

Frac type in List 2 is an example of such user-defined types.
fabs is a function that returns the absolute value of the given
Frac. fabs implicitly assumes that the numerator has the
sign and the denominator is a non-zero positive value, so fabs
does not return the correct value if the given Frac has a
negative denominator. This is a fault to be fixed if the implicit
assumption is not valid, but the implementation is correct
if the assumption is actually valid. Since the validity of the
assumption depends on the specification or the implementation
of other parts, it is difficult for a tool to infer the correct
behavior.

B. User-defined Generators

QuickCheck simply solves this problem by requiring de-
velopers to provide generator functions for user-defined types.
These user-defined generators are expected to return only valid
values for the type. For example, the generator for Frac
may return only Fracs with non-zero positive denominators,
but not Fracs with negative denominators. In this manner,
QuickCheck can generate only valid values and filter out the
possibility of false alerts caused by invalid values. However,
user-defined generators sometimes have troubles when (1) the
generator itself contains a bug, or (2) there is a gap between
the valid values and the possible values for a type. Both leads
to an unnecessarily limited distribution of the generated values,
and inability to find faults that would be revealed by the values
unnecessarily filtered out.

1) Generator Containing Bugs: It is not uncommon for
a generator function to have a bug. This is because gener-
ating meaningful random values is more difficult than one
expects. In fact, even the developer of a property-based testing
tool may make a mistake in writing generators. Here is
an example. ScalaCheck is a well-known and widely-used
port of QuickCheck for Scala. ScalaCheck provides a default
generator for Scala’s Option type. However, the generator
for Option had a long-hidden bug6, which makes test results
invalid. To avoid such issues, automated random test genera-
tion methods can be used to provide random but meaningful
values.

2) Gap Between Valid Values and Possible Values: There
are cases where the possible values for a type are not the
same as the valid values for the type, peculiarly when the
SUT contains faults. Here, we call a value possible if the
value can be created within the normal execution of the SUT.
List 3 is our motivating example. The SumStack contains
two bugs, that cannot be found by property-based testing with
user-defined generators.
SumStack maintains the summation of data in a cache

field sum. So in valid states the summation of data must be
equal to sum. Figure 1 illustrates some states of SumStack.

6https://github.com/rickynils/scalacheck/issues/75
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public class SumStack {
private List<Integer> data = new ArrayList<Integer>();
private int sum = 0;
public void push(int x) {

data.add(x);
sum += x;

}
public void pop() {

// Bug 1. The developer forgot to update ’sum’ in pop
//sum -= data.get(data.size()-1);
data.remove(data.size()-1);

}
public int getSum() {

return sum;
}
public List<Integer> getData() {

// Bug 2. The mutable reference to ’data’ is returned,
// so that the caller can modify ’data’ freely.
return data;
// the correct implementation will be:
//return Collections.unmodifiableList(data);

}
}

List 3. Motivating Example: SumStack

({x,y},x+y)({x},x)({},0)

push(x) push(y)

({x},x+y)({},x)

pop()
getData().clear()

pop()

pop()pop()

(null,0)

#1 #2 #3

#4 #5
#6

Figure 1. States of SumStack: States #1, #2, and #3 are valid and possible
states. States #4, #5, and #6 are invalid. States #4 and #5 are possible only
if the implementation of SumStack has bugs.

In each state ({ai},b), {ai} denotes the data in the stack, and
b denotes the value of sum. The states with solid circles (#1,
#2, and #3) are valid states, and the states with dotted circles
(#4, #5, and #6) are invalid states. Possible values are all the
states reachable from the initial state #1. Thus, states #4 and
#5 are not possible if there is no bug but possible with the
existence of bug 1 and 2. State #6 is invalid and not possible
even with the existence of the bugs. Note that if SumStack
have no bugs the invalid states must not be possible, because in
terms of encapsulation SumStack is responsible to maintain
consistency of its inner states. However, bugs 1 and 2 allow
transitions to invalid states, making them possible values.

What should be the generator function for SumStack?
List 4 is a simple intuitive generator that creates SumStack
with a random length by calling push several times. Generator
#1 can produce a variety of SumStack instances with valid
states, and works perfectly if SumStack has no bug. Unfor-
tunately, this generator is not effective if SumStack contains
faults because instances generated by generator #1 can never
reach states #4 and #5, so the property-based testing cannot
reveal invalid transitions caused by pop. It is ironic that the
generator aims to find bugs but does not work well if the SUT
actually has bugs.

public static SumStack generator1(long seed) {
Random random = new Random(seed);
SumStack sumStack = new SumStack();
int size = random.nextInt(100);
for (int i = 0; i < size; i++) {

sumStack.push(random.nextInt(100));
}
return sumStack;

}

List 4. Generator #1: Generator Only Using push

public static SumStack generator2(long seed) {
Random random = new Random(seed);
SumStack sumStack = new SumStack();
int n = random.nextInt(100);
for (int i = 0; i < n; i++) {

switch (random.nextInt(2)) {
case 0:

sumStack.push(random.nextInt(100));
break;

case 1:
if (!sumStack.getData().isEmpty()) sumStack.pop();
break;

}
}
return sumStack;

}

List 5. Generator #2: Generator Using Both push and pop

public static SumStack generator3(long seed) {
Random random = new Random(seed);
SumStack sumStack = new SumStack();
int n = random.nextInt(100);
for (int i = 0; i < n; i++) {

switch (random.nextInt(3)) {
case 0:

sumStack.push(random.nextInt(100));
break;

case 1:
if (!sumStack.getData().isEmpty()) sumStack.pop();
break;

case 2:
sumStack.getData().clear();
break;

}
}
return sumStack;

}

List 6. Generator #3: Generator Using getData().clear()

The defect of generator #1 is that it missed transitions by
pop. Generator #2 in List 5 tries to cover all transitions
by calling push and pop in a random order. With gen-
erator #2, bug 1 can be found with property-based testing.
However, bug 2 cannot be revealed, because the call to
getData().clear() is not included in generator #2.

Generator #3 in List 6 tries to reveal bug 2 by adding calls to
getData().clear(). However, writing generator #3 is in
fact ridiculous, because the developer has to know that the call
to getData().clear() is allowed and causes problems.
In addition, generator #3 cannot be used when bug 2 is fixed,
because clear on unmodifiable list throws an exception.

As we can see from the example of generators #1, #2, and
#3, it is impossible to write a generator function that reveals
both bugs 1 and 2 without knowing the existence of the bugs,
and the generator that can reveal both the bugs cannot be used
after the bugs are fixed.
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C. Feedback-directed Random Test Generation

We solve this problem by automating the generation of user-
defined types with the help of feedback-directed random test
generation [2] technique. Feedback-directed random test gen-
eration explores the possible states of the type by combining
calls to methods, so that it can find actual faults revealed by
possible invalid states without reporting false alerts caused by
impossible invalid states.

Feedback-directed random test generation is an algorithm
to generate test cases. It takes a list of classes as an input, and
output sequences of statements. A sequence corresponds with
a test case, and consists of calls to the public constructors and
methods from the class list, so that objects are created and
mutated in each test cases.

It is notable that the created objects in each test case will
be all possible, and must be valid in a correct program. This
is because in object-oriented programming languages classes
have to be encapsulated and any public method of the class
must keep the object in a consistent state, or throw an excep-
tion if it is impossible to keep consistency. In other words,
in a well-designed object-oriented program, if a sequence of
public constructors and methods does not throw an exception,
the resulting object must be in a consistent state. Also if the
classes are well decoupled, all states must be reachable by
using only public constructors and methods.

As the name indicates, feedback-directed random test gen-
eration monitors feedback from constructors or methods (i.e.
exceptions thrown) to accelerate generation of sequences.
If constructors and methods are randomly chosen without
this feedback, it is likely that most sequences violate some
object protocols and an exception is thrown during execution.
Feedback-directed random test generation algorithm incre-
mentally extends existing sequences, and stops extending if
any exception is thrown, to efficiently create sequences that
terminate normally.

Compared to systematic methods for generating test cases
such as symbolic execution, feedback-directed random test
generation is scalable with the size of SUT, because it treats
a program as a black box. It is also easy to implement as it
does not require any kind of static or dynamic analysis.

A Java implementation of feedback-directed random test
generation algorithm is Randoop [4]. It also supports some
optimizations to generate practical tests for real programs [5].
Randoop was originally designed to find faults with contracts,
however, we extended Randoop to run property-based tests
because property-based testing has the advantages described
in Section II-A.

III. PROPOSAL

We propose ArbitCheck7, a property-based testing tool for
programs written in Java language. It can test properties
written in Java language without user-defined object gener-
ators. The key idea is to use feedback-directed random test

7https://github.com/kohyatoh/arbitcheck

generation algorithm for creating random inputs to property-
based tests.

Here is an example of a property written in Java.
public class ReverseProp {

@Check
public static void prop_RevRev(int[] xs) {

assertArrayEquals(xs, reverse(reverse(xs)));
}

}

List 7. Example of Property Written in Java

The user compiles the code into a class file, and runs Ar-
bitCheck with the class. ArbitCheck scans the class to find
properties annotated with @Check, and then runs feedback-
directed random test generation. The test generation ends when
each property is tested against n different inputs, where n is a
configurable integer number (defaults to 1000). After running
property-based tests, ArbitCheck reports the result as follows.
prop_RevRev: OK, passed 1000 tests.

List 8. Report from ArbitCheck When Tests Passed

This indicates that prop_RevRev is checked with 1000
randomly generated inputs and all the tests passed. If some
tests failed, ArbitCheck reports such that:
prop_RevRev: Failed 10 tests out of 1000 tests.

List 9. Report from ArbitCheck When Tests Failed

In this case, the failed 10 test cases are written to a JUnit test
case file so that the user can inspect the failed inputs.

A. Writing Properties

The properties are written as a method with arbitrary
signature. The property can take any number of arguments. In
fact, the property is not necessarily static. Here is an example
of a non-static property.
public class Wallet {

private BigInteger money;
...
@Check
private void prop_Money() {

assertNotNull(money);
assertTrue(money.compareTo(BigInteger.ZERO) >= 0);

}
}

List 10. Example of Non-static Property

The property prop_Money describes invariant of a private
field money. Note that the property is declared private, so
that no external user of Wallet can call the property method.
ArbitCheck uses reflection to call the properties, and the
resultant JUnit test cases do that, too.

If the property throws an exception, ArbitCheck regards it
as an indication that the property failed to hold. In this manner,
developers can use any assertion utility library, including
JUnit, to describe properties. The exception can be either
checked or unchecked, and the throws clause of properties
does not affect any behavior of ArbitCheck.

A property can be declared that it does throw an exception
as an expected behavior, and does not hold if no exception is
thrown as in List 11.
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@Check(expected=EmptyStackException.class)
public static void prop_Overpop(Stack stack) {

int size = stack.size();
for (int i = 0; i < size; i++) stack.pop();
// the (size+1)-th pop() should throw an exception
stack.pop();

}

List 11. Example of Property Expecting Exception

ArbitCheck provides a way to write a conditional property
by treating some kinds of exceptions specially. These special
exceptions include ones thrown by org.junit.Assume,
but can be configured by users. If these exceptions are thrown,
the checking attempt is not accounted to the total number of
inputs fed to the property.
@Check
public static void prop_PopSize(Stack stack) {

assumeTrue(!stack.isEmpty());
int size = stack.size();
stack.pop();
assertEquals(size-1, stack.size());

}

List 12. Example of Conditional Property

In this case, calls to prop_PopSize with an empty stack
is ignored so that ArbitCheck runs until prop_PopSize is
tested against 1000 non-empty stacks.

B. Monitoring Generated Objects
It is essential for random testing to monitor objects gen-

erated, in order to understand the distribution of generated
objects. ArbitCheck provides a monitoring feature through
test case labeling in the similar manner with QuickCheck.
ArbitCheck offers Monitoring object, which has two meth-
ods, collect(Object o) and classify(boolean
b, String name). These methods add a label to the
current test case. In order to use monitoring, properties must
be marked that monitoring=true and take Monitoring
object as the first argument.
@Check(monitoring=true)
public static void prop_RevRev(Monitoring m, int[] xs) {

m.collect(xs.length);
assertEquals(xs, reverse(reverse(xs)));

}

List 13. Example of Monitoring Using collect

By using collect, the user can make a histogram of objects
generated. List 13 is an example property using collect,
and the report from ArbitCheck will be:
prop_RevRev: OK, passed 1000 tests.
35% 0
25% 1
15% 2
...

List 14. Report from ArbitCheck When Using collect

To split test cases into some classes, classify is useful.
classify adds a label to the test case conditionally.
@Check(monitoring=true)
public static void prop_RevRev(Monitoring m, int[] xs) {

m.classify(xs.length == 0, "trivial");
assertEquals(xs, reverse(reverse(xs)));

}

List 15. Example of Monitoring Using classify

Target software and property

Classes

Failed sequences 

Test ResultsFailed test cases

Test Runner
runs modified feedback-directed random test
generation algorithm to test property

Class Selector
analyzes class dependencies to
choose classes necessary for testing

Test Case Creator
cleans up and formats test cases for
better readability

Figure 2. ArbitCheck Architecture

The report from ArbitCheck will be:

prop_RevRev: OK, passed 1000 tests (35% trivial).

List 16. Report from ArbitCheck When Using classify

A test case may have two or more labels at the same time.
In this case, ArbitCheck uses the concatenation of labels in
order to classify it.

IV. IMPLEMENTATION

Although the idea of ArbitCheck is very straightforward
and the technologies behind it are established ones, there were
some difficulties in implementing ArbitCheck. The difficulties
mainly come from adapting feedback-directed random test
generation algorithm to real world settings. In this chapter
we explain the implementation of ArbitCheck.

ArbitCheck consists of three components, (1) class selector,
(2) test runner, and (3) test case creator. Figure 2 illustrates the
relationship between these three components. Class selector
analyzes the SUT to make a list of classes that should be used
to generate tests. Then the list is passed to test runner, in which
feedback-directed random test generation is used to generate
objects and check properties. Failed test cases are minimized
and formatted as JUnit test cases by test case creator. Finally,
results of the tests and failed test cases are reported to the
user.

A. Class Selector

In practice, it is essential for random testing to appropri-
ately designate the list of classes to use. If some necessary
classes are not included, some possible objects cannot be
generated, whereas unneeded classes in the list slow down the
test generation. In addition, real applications contain codes
that are not suited to random testing [6], for example, file
system operations, thread manipulations, GUI-related classes
or reflection mechanisms. By using SecurityManager of
JVM we may partly sanitize these codes, but it is better not to
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use them at all. Despite its importance, providing the class list
is a laborious, tedious and error-prone task, thus it is necessary
to automate the creation of this list.

Our goal is to call property functions with many different
objects. If the parameter is a primitive, the tool can easily
produce a random value. On the other hand, if the parameter
is an object the tool has to create and mutate the object. In
general, classes have dependencies, that is, objects with some
other types are needed to create or mutate an object with a
certain type. In order to analyze the dependencies, we define
three terms, provider, parameter, and mutator for class c as
follows:

provider(c) = {c′ ∈ C|∃m ∈ member(c′), ret(m) = c}
parameter(c) = {c′ ∈ C|∃m ∈ member(c), c′ ∈ param(m)}

mutator(c) = {c′ ∈ C|∃m ∈ member(c), ret(m) = c′}

Here C denotes all classes in the SUT, member(c) denotes
the methods and constructors of class c, param(m) denotes
the parameter classes of member m, and ret(m) denotes the
return type of member m. provider(c) is the set of classes that
can create an instance of class c. parameter(c) is the set of
classes that are needed to call members of class c. mutator(c)
is the set of classes that are returned from members of class
c. Thus, if we want to use class c in random testing, we need
• provider(c) to create instances of class c,
• parameter(c) to call methods or constructors of class c,
• and mutator(c) to mutate instances of class c.

We begin with the parameter of the property, and then add
the provider, parameter and mutator of already added classes
recursively until all necessary classes are included.

Here comes a complication. For mutator and parameter,
we have no choice but include all of the classes in them.
However, for provider, we do not have to include all of them.
Actually we should not do so. For example, Map has a method
keySet() that returns a Set, but creating Map is redundant
to test Set. To choose appropriate classes, we introduce a
rank-based heuristic approach. Rank for a member is defined
as:

rank(m) = 1 +
∑

t∈param(m)

rank(t),

and rank for a type is defined as:

rank(t) =

{
0 (if t is primitive)
minm∈M,ret(m)=t rank(m) (otherwise)

where M is the set of all members, that is M = {m|c ∈
C,m ∈ member(c)}. The rank for a type corresponds to the
minimum number of method invocations required to create an
instance of the type, and the rank for a method corresponds
to the minimum number of method invocations required to
invoke the method. These values can be computed efficiently
using dynamic programming. When choosing classes from
provider, we include only the classes with the lowest rank.
This is because we assume that the lower rank indicates the
lower level of dependence, and that classes with lower rank is
less likely to introduce unnecessary dependencies.

GenerateSequencesAndRunTests(classes, property)
nonErrorSeqs← {}
while not isF inished() do

m(T1, ..., Tk)
← randomPublicMemberOrProperty(classes, property)

seqs, vals
← randomSeqsAndV als(nonErrorSeqs, T1, ..., Tk)

if m is a property then
checkProperty(m, seqs, vals)

else
newSeq ← extend(m, seqs, vals)
if execute(newSeq) does not throw an exception then

nonErrorSeqs← nonErrorSeqs ∪ {newSeq}
end if

end if
end while

Figure 3. Rough Sketch of Feedback-directed Random Test Generation
Algorithm Modified for Property-based Testing: Changes from the original
algorithm are underlined.

B. Test Runner

Test runner takes the class list produced by class selector,
and conducts feedback-directed random test generation. It
also monitors the results of property tests. Figure 3 is a
rough sketch of the feedback-directed random test generation
algorithm modified for property testing.

isFinished() returns true if the number of non-ignored
property checking attempts reaches the predefined threshold.
randomPublicMemberOrProperty() chooses the property or
one of public methods and constructors of the classes at
random and returns the selected one. randomSeqsAndVals()
chooses variables that fit to the parameter of the chosen
method from the existing non-error sequences and returns
them along with the sequences they are belonging to. Then,
a new sequence is created by extend(). If the chosen method
is a property, the newly generated sequence is executed under
a monitored environment by checkProperty(). Otherwise, the
newly generated sequence is executed, and added to the set of
non-error sequences if it does not throw an exception.

C. Test Case Creator

The test cases generated by ArbitCheck are intended to be
inspected by developers. Thus, the readability of the test cases
does matter. Test case creator applies several techniques to
make the test case cleaner and more natural.

1) Removing Redundant Method Calls: From the nature
of random testing, the test cases often contain redundant
method calls that do not affect the result of tests. Such
redundant method calls are typically, but not limited to, calls
for getter methods whose return values are not used in the
latter sentences. Randoop exports a feature to remove these
method calls in a greedy manner. For each sentence of the
test case, Randoop removes the sentence, runs the test again
and checks whether the result of the test case changes. If it
does not, the sentence can be safely removed.

2) Sorting Test Cases: It is common in random testing that
one fault causes lots of test cases to fail. In such situations,
developers want to inspect the least complex test case first
to roughly locate the fault. Then more complex test cases
should be used to inspect the fault in detail. ArbitCheck sorts

401410



TABLE I
NAMING RULES

Test case class ${name of class to test} + ”Test”

Test case method ”test” + ${name of property} + id

General variable ${type name of variable}
Variable set by getter ${name of getter}

the resulting test cases according to the size of sequences
corresponding to them, so that the least complex test case
comes first and the most complex one comes last.

3) Naming Tests or Variables: Good names are essential
for correct program understanding. We give the names based
on the rule described in Table I. We name test cases based
on the test target. Variables are named by its type. There is
an exception for variables assigned by getter methods (i.e.
methods with name ”getXXX”). The ”XXX” is often more
descriptive than the type name so we use it instead.

V. RUNNING EXAMPLE

List 17 is our motivating example along with a property
description. Please note that in this case the property is written
as a private non-static method of the SumStack class itself,
rather than in a separate class dedicated for test.
public class SumStack {

private List<Integer> data = new ArrayList<Integer>();
private int sum = 0;
public void push(int x) {

data.add(x);
sum += x;

}
public void pop() {

// Bug 1. The developer forgot to update ’sum’ in pop
//sum -= data.get(data.size()-1);
data.remove(data.size()-1);

}
public int getSum() {

return sum;
}
public List<Integer> getData() {

// Bug 2. The mutable reference to ’data’ is returned,
// so that the caller can modify ’data’ freely.
return data;
// the correct implementation will be:
//return Collections.unmodifiableList(data);

}
@Check
private void prop_SumData() {

int _sum = 0;
for (int x : data) _sum += x;
assertEquals(_sum, sum);

}
}

List 17. Motivating Example With Property

prop_SumData asserts that the summation of data is
always equal to sum. However, when we test this property by
ArbitCheck, ArbitCheck reports the property does not always
hold.

List 18 is a failed test case reported by ArbitCheck.
void testProp_SumData() {

SumStack sumStack = new SumStack();
sumStack.push(100);
sumStack.pop();
checkProperty(SumStack.class, "prop_SumData", sumStack);

}

List 18. Failed Test Case #1

By inspecting this test case, developers will notice that they
forgot to adjust sum in pop.

After fixing bug #1, developers can rerun ArbitCheck. Then
it reports another failed test cases as follows:
void testProp_SumData() {

SumStack sumStack = new SumStack();
sumStack.push(100);
List data = sumStack.getData();
data.clear();
checkProperty(SumStack.class, "prop_SumData", sumStack);

}

List 19. Failed Test Case #2

As we can see in the test case, the list returned by
getData() can be modified outside the class and may
become inconsistent with the sum. The problem here is that
getData() returns a mutable reference to a field of the
class (i.e. data), which leads to an inappropriate accessibility
granted to the caller. The correct implementation should use
Collections.unmodifiableList to prevent changes
from outside of the class.

VI. DISCUSSION

A. Performance

Although systematic test generation approaches such as
symbolic execution can achieve higher coverage than random
testing, they suffer from scalability problems because they
have to analyze the inner control structure of a program. Real-
world applications are often too complex to be analyzed in a
reasonable amount of time. Feedback-directed random testing
treats a program as a black-box and ignores the inner control
structure of the program. Thus the technique can be applied to
large-scale programs. In fact, widely-used large libraries like
Jakarta Commons Collections (with 61KLOC) can be tested
using Randoop [2].

B. Generated Object Distribution

We must stress that the effectiveness of property-based tests
strongly depends on the distribution of generated objects.
Property-based testing becomes most effective if the distri-
bution of generated objects is equal to the actual distribution.
However, in general, it is difficult to completely simulate the
actual distribution so some extent of the actual distribution
may be left untested. The amount or tendency of such areas
vary a lot depending on the characteristics of the SUT. Thus,
monitoring generated objects are very important to assess the
effectiveness of property-based tests.

If the monitored distribution is much smaller than the
expected distribution, there are two possible causes: (1) faults
in mutator, which limit the distribution inappropriately, or (2)
limitation of random test generation.

If some mutators of a class have faults, the generated distri-
bution becomes smaller. For example, if Stack.push has a
bug and throws NullPointerException every time it is
called, the stack can never grow up, so ArbitCheck can only
generate empty stacks. However, ArbitCheck cannot know this
is an erroneous distribution as property-based tests do not
have the construction to describe the expected distribution.

402411



The developer is responsible for judging the distribution is
desirable, and find faults if it is not.

There are some cases ArbitCheck fails to generate instances
for a certain class, even if the mutators do not have faults. An
extreme example is java.lang.Class. Class must be
obtained by Class.forName(name), where name must
be a valid class name loaded to JVM. It is impossible for
ArbitCheck to infer such restrictions and provide appropriate
values, thus ArbitCheck will almost never instantiate Class
object. In this case, developers can write a helper factory
method that returns random Class objects so that ArbitCheck
can test them, although this partly spoils the principle of our
tool that unexpected objects should be generated and tested.

VII. RELATED WORK

There are many tools for test generation, ranging from
research prototypes to commercial tools [6]–[11], which in-
dicates the huge demand on automated testing.

Pex [7] is a test generation tool for .NET framework. It
employs parameterized unit tests [12], which is similar to
properties. However, the way of generating inputs are quite
different from ours, as Pex uses dynamic symbolic execution to
generate arguments for the parameterized unit tests. Dynamic
symbolic execution is powerful in finding errors that seldom
occur with random inputs, but takes more time to run and is
not scalable. In addition, Pex requires user-defined generators,
so it is facing the same difficulty of writing generators as the
traditional property-based testing tools are.

Fuzz testing [13] was first introduced to test reliability of
Unix utilities and has been used widely in practice. A fuzz
testing tool SAGE developed by Microsoft Research [8] was
intensively used to test Windows 7 [14]. Fuzz testing differs
from property-based testing in that it tests not each methods
but the whole program as a process. Fuzz testing generates
inputs as text- or byte-streams of data, feeds them to the
process and checks that the process behaves correctly (for
example, does not crash). Fuzz testing is effective for testing
the robustness of a program as a whole, while property-based
testing is useful for testing each unit of a program not violating
properties.

There are more heavy-weight testing tools, for example,
Smartesting CertifyIt [9]. In such tools the properties are
written by dedicated modeling languages such as UML or
statecharts, so that developers can test more complex prop-
erties (e.g. temporal properties) which cannot be expressed by
the implementation language. In a large and quality-sensitive
project the cost of writing properties in dedicated modeling
languages can be compensated by the increased ability to find
faults. However, the cost is often too high for small teams8.

Several approaches are proposed to improve the perfor-
mance of random testing. In adaptive random testing [15],
distances of objects are measured and the most distant untested
object is selected to test. Swarm testing [16] limits the set

8Small teams with less than 10 members are recommended by modern
agile strategies for software development, including Scrum and Extreme
Programming.

of operations so that objects with extreme states can easily
be created. RecGen [17] suggests a sequence of methods
that access the same object field so that the methods in
a sequence become more relevant to each other. Dynamic
symbolic execution can be combined with random testing to
achieve higher coverage [18]. We may adapt these techniques
to improve the performance of ArbitCheck, however, we have
to carefully evaluate them because they are developed for
and evaluated with contract-based testing or regression test
generation, not property-based testing.

VIII. CONCLUSION

In this paper, we presented ArbitCheck, a property-based
testing tool for Java. ArbitCheck takes properties written in
Java and tests them with feedback-directed random test gener-
ation. Additionally, it produces JUnit test cases for developers
to inspect failed properties with concrete sequences of method
calls that lead to errors. Our tool can reveal faults that are hard
to find by using traditional manually written tests or existing
property-based testing tools.
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